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Fundamental Question: What shape is this?
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- Pictured: (Fake) event that you might
v R have measured at the LHC
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Goal: Construct an observable @that
generically answers this question!
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Fundamental Question: What shape is this?

e Event « Structure Points Circle

Using the SHAPER framework and
optimal transport ......
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| Circle with radius 0.767, center
- % (0.50, 0.36) and a “circle-ness” value

EMD. 0326 Gev - of 0.32.
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Yes, you CAN hear the shape of a jet!
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Piecewise-Linear Manifold
Approximation with K-Deep Simplices
(KDS, 2012.02134)

An 1AIFI Story

SHAPER: Learning the Shape of Collider Events

min EMD(E, &)
EheM

argmin EMD(E, &)
Eé eM

Well-Defined Metric on Particle Collisions
using Energy Mover’s Distance (EMD,
2004.04159)

Framework for defining
and calculating useful
observables for collider
physics!



https://arxiv.org/abs/2012.02134
https://arxiv.org/abs/1902.02346

[P. Tankala, A. Tasissa, J. M. Murphy, D. Ba, 2012.02134;
see also F.Dornaika, L.Weng, DOI: 0.1007/s13042-019-01035-z;

B u i I d i n g S H AP E R see also S. Roweis and L.Saul, DOI: 10.1126/science.290.5500.2323]

Key Component: The Loss function! Step 1: Manifold Learning
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K-Deep Simplices,
Dictionary Learning, &
Manifold Learning
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Building SHAPER

Key Component: The Loss function! Step 2: Physical Principles

[P. Komiske, E. Metodiev, J. Thaler, 1902.02346;

see also T. Cai, J. Cheng, K. Craig, N. Craig, 2111.03670;
see also C. Zhang, Y. Cai, G. Lin, C. Shen, 2003.06777;
see also L. Hou, C. Yu, D. Samaras, 1611.05916;

see also M. Arjovsky, S. Chintala, L. Bottou, 1701.07875]
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IRC Safety,
Unclustered Radiation, &
Wasserstein Geometry
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Building SHAPER

Key Component: The Loss function! Step 3: Synthesis
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Building SHAPER

Conversations with;:

e Connections to development
e Potential applications to
e Discussion of

Connections made at the IAIFI penthouse and coffee hours!
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Fun Animations

Azimuthal Angle
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Fun Animations Cont’d
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New IRC-Safe Observables Max Eccentricity

Top Quark Jet
Light Quark Jet

The SHAPER framework makes it easy to
invent new jet observables!

e.g. N-Ellipsiness+Pileup as a jet algorithm.

Density
o - N w o w =2 - 0

Learn jet centers
Dynamic jet radii (no R hy * \ E T — b / B
Dynamic eccentricities and angles : \ .

Dynamic jet energies . '
Uniform Pileup Subtraction : | VAL -
Learned parameters for discrimination R~ ‘

Can design custom specialized jet algorithms to v

learn jet substructure! Low Max Eccentricity (.001)  High Max Eccentricity (.972)
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Other Developments: Statistics in Physics

Machine Learning Calibrations (2205.05084) Gaussian Ansatz Statistical Framework (2205.03413)

Thaler Bias and Priors in Machine Learning Calibrations for High Energy Physics Learning Uncertainties the Frequentist Way:
Calibration and Correlation in High Energy Physics

Rikab Gambhir. 3.4,

Foa sse Tha 1,2, § .
and Jesse Thaler .
| Physics. M husotls Tisttiud Technol Cambrid MA 02139, USA Rikab Gambhir,"?* Benjamin Nachman,®* | and Jesse Thaler!:?:*
AT S for Aokl kel omesand Wit Ioctonst . | " Center for Theoreical Physics, Massachusctts Instiute of Technology. Cambridge, MA 02139, USA
; e i e e e e e The NSF A Institute for Artificial Intelligence and Fundamental Interactions
slon, fauirence Serkeley, Nationa, Laramiory, Jerfeley, CA 04780, L 3 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

2:* Benjamin Nachman,

tute for Data Science, University of California, Berkeley, CA 94720, USA *Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA continues!

Calibration is a common experimental physics problem, whose goal is (0 infer the value and U+ f—————

certainty of an unobservable quantity Z given a measured quantity X. Additionally, one would
like to quantify the extent to which X and Z are correlated. In this paper, we present a machine

Machine learning offers an exciting opportunity to improve the calibration of nearly all reconstructed
objects in high-energy physics detectors. However, machine learning approaches often depend on

undesirable property of a calibration, which needs to be applicable in a variety of environments. The learning framework for performing frequentist maximum likelihood inference with Gaussian uncer-
purpose of this paper is to explicitly highlight the prior dependence of some machine learning-based tainty estimation, which also qua the mutual information between the unobservable and mea-
calibration strategies. We demonstrate how some recent proposals for both simulation-based and sured quantities. This framework uses the Donsker-Varadhan representation of the Kullback-Leibler
data-based calibrations inherit properties of the sample used for training, which can result in biases divergence —parametrized with a novel Gaussian Ansatz  to enable a simultaneous extraction of the
for downstream analyses. In the case of simulation-based calibration, we argue that our recently maximum likelihood values, uncertainties, and mutual information in a single training. We demon-
proposed Gaussian Ansatz approach can avoid some of the pitfalls of prior dependence, whereas strate our framework by extracting jet energy corrections and resolution factors from a simulation of
prior-independent data-based calibration remains an spen problem. the CMS detector at the Large Hadron Collider. By leveraging the high-dimensional feature space

inside jets, we improve upon the nominal CMS jet resolution by upwards of 15%.

| T

Simulation-Based Dijets Example

Simulation-Based Dijets Example
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https://arxiv.org/abs/2205.03413
https://arxiv.org/abs/2205.05084

Other Developments:

Gaussian Ansatz Statistical Framework (2205.03413)

Learning Uncertainties the Frequentist Way:
Calibration and Correlation in High Energy Physics

Rikab Gambhir,"?* Benjamin Nachman,®* | and Jesse Thaler!
! Center for Ti X h Institute of Technology, Cambridge, MA 02139, USA
2The NSF Al Institute for Artificial Intelligence and Fundamental Interactions

3 Physics Division, Lawrence Berkeley National Laboratory. Berkeley, CA 94720,

*Berkeley Institute for Data Science, University of California, Berkeley, CA 94720,

SA

Calibration is a common experimental physics problem, whose goal is to infer the value and un-
certainty of an unobservable quantity Z given a measured quantity X. Additionally, one would
like to quantify the extent to which X and Z are correlated. In this paper, we present a machine
learning framework for performing frequentist maximum likelihood inference with Gaussian uncer-
tainty estimation, which also quantifies the mutual information between the unobservable and mea-
sured quantities. This framework uses the Donsker-Varadhan representation of the Kullback-Leibler
divergence — parametrized with a novel Gaussian Ansatz —to enable a simultaneous extraction of the
maximum likelihood values, uncertainties, and mutual information in a single training. We demon-
strate our framework by extracting jet energy corrections and resolution factors from a simulation of
the CMS detector at the Large Hadron Collider. By leveraging the high-dimensional feature space
inside jets, we improve upon the nominal CMS jet resolution by upwards of 15%.

W Mass Measurements (DOI: 10.112)
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MIT Summer Research Progr:

®UMBC Determination of the W Mass Parameter using Machine Learning
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Exposing students to both particle physics and machine
learning to explore new ways to synthesize the two!
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https://www.science.org/doi/10.1126/science.abk1781
https://arxiv.org/abs/2205.03413

Other Developments: Summer Students

Attention Is All You Need (1706.03762)

Qutput
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Multi-Head
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(shifted right)
Translating machine learning language into physics language:
What does the attention mechanism look like for a physicist?
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https://arxiv.org/abs/1706.03762?context=cs

Outlook

Exciting research in physics and machine learning enabled by IAIFI!

e |deas from dictionary and manifold learning to analyze jet data
e Statistical frameworks for precision electroweak measurements
e Efficient machine learning architectures translated to physics language

Made possible by collaborations across fields and institutions!
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