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3. Jet Energy Calibration

Learn frequentist uncertainties directly and in one training, and quantify correlations!
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Motivation and Theory
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Problem Statement
Given data samples of two random 
variables, X and Y, we can ask the 
following questions about them:

1. Given a sample x, can we predict 
y, with uncertainties?

2. Precisely how correlated are X 
and Y?
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Problem Statement
Given data samples of two random 
variables, X and Y, we can ask the 
following questions about them:

1. Given a sample x, can we predict 
y, with uncertainties?

2. Precisely how correlated are X 
and Y?

In the context of calibration, we would 
like to do this in a frequentist way!
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● Frequentist inference: Find 
and characterize p(x|y)

● Mutual Information: 
Calculate I(X;Y)
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● Frequentist inference: Find 
and characterize p(x|y)

● Mutual Information: 
Calculate I(X;Y)

We can answer both questions at the same time, only looking at the data once!
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We can answer both questions at the same time, only looking at the data once!

Rich existing literature!

Simulation based inference & Uncertainty Estimation: 
[Cranmer, Brehmer, Louppe 1911.01429;

Alaa, van der Schaar 2006.13707;
Abdar et. al, 2011.06225;

Tagasovska, Lopez-Paz, 1811.00908;
And many more!]

Bayesian techniques:
[Jospit et. al, 2007.06823;
Wang, Yeung 1604.01662;
Izmailov et. al, 1907.07504;

Mitos, Mac Namee, 1912.1530;
And many more!]
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A measure for non-linear interdependence is the Mutual Information:

Answers the question: How much information, in terms of bits, do you learn 
about Y when you measure X (or vice versa)?

Can be written as the well-known KL-Divergence: 

Mutual information
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The Donsker-Varadhan Representation
We can write the KL-Divergence in the Donsker-Varadhan Representation:

If the class of parameterized functions 𝒯 is expressive enough, the bound will 
be saturated. 

Goal: Find the T minimizing this loss functional!
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*Other representations, such as those based on f-divergences, 
have also been tried, but suffer convergence issues

[Belghazi, Baratin, Rajeswar, Ozair, Bengio, Courville, Hjelm, 1801.04062;
Le, Nguyen, Phung, 1711.01744

Nowozin; Cseke, 1606.00709]
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Estimating Likelihoods
The bound is saturated for the learned function (Well-known!):

This contains the likelihood! So we can perform maximum likelihood inference 
(Assuming the network is well trained!): 
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Estimating Uncertainties
Standard Uncertainty contours given by:
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Estimating Uncertainties
Uncertainty contours given by:

Too hard! Settle for Gaussian error bars:
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Estimating Uncertainties
Uncertainty contours given by:

Too hard! Settle for Gaussian error bars:

Goal: Extract this value (without any extra work)!
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Framework
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Maximum Likelihood
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*If you use the ReLU activation function, all second derivatives are zero.

For a measurement X, what was the Y most likely to have produced it?  
Inherently independent of the prior for Y  - the calibration task

We can also extract Gaussian uncertainties given by

Technically, we can calculate these from our trained network T. But finding 
maxima and derivatives* is extremely hard! 
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The Gaussian Ansatz
Parameterize T(x,y) in the following way (the Gaussian Ansatz):

This is the Gaussian Ansatz for T
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The Gaussian Ansatz
44fffffff

This ansatz is fully expressive: any smooth function of X and Y can be written 
in this form! The networks A, B, C, and D are all learned functions. 

If we take the limit D→0 (forced during training), then we can see:

The maximum likelihood solution for Y given X, plus its uncertainty, are 
manifest in the Gaussian Ansatz! No need for difficult maximization problems
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Example Calibration Problem
Premise: A noisy voltmeter

The “true” voltage Y is a random number given 
by P(y) = U(-5,5) * 

The voltmeter adds Gaussian noise N with a 
standard deviation of 1 Volt: Observe X = Y + N 

Given the observation X, what was Y and its 
uncertainty?

Expect to learn the likelihood P(x|y) = Norm(y, 1)

Inherently frequentist!

20

*Technically, I don’t need to tell you P(x) or P(y) because of prior independence!
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Example Calibration Problem
Model: 

● The A, B, C, and D networks are each 
Dense networks with 4 layers of size 32 

● ReLU activations 
● All parameters have an L2 regularization 

(λ = 1e-6)
● The D network output has an L1 

regularization (λ = 1e-4)

Learned mutual information of 1.05 natural bits

Reproduces the expected maximum likelihood 
outcome and the correct resolution!
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Example Calibration Problem - Prior Independence

22

P(Y) = N(0, 2.5) P(Y) = U(-5, 5)
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Jet Energy Calibrations
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Problem Statement
Measure a set particle flow candidates 
X in the detector. What is the 
underlying jet pT, Y, and its 
uncertainty?

Define the jet energy scale (JES) and 
jet energy resolution (JER) as the 
ratio of the underlying jet pT 
(resolution) to the measured total jet 
pT

24

[CMS, 1607.03663]
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Models
● DNN: X = (Jet pT, Jet 𝜂, Jet φ), Dense Neural Network
● EFN: X = {(PFC pT, PFC 𝜂, PFC φ)}, Energy Flow Network
● PFN: X = {(PFC pT, PFC 𝜂, PFC φ)}, Particle Flow Network
● PFN-PID: X = {(PFC pT, PFC 𝜂, PFC φ, PFC PID)}, Particle Flow Network
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[Komise, Metodiev, Thaler, 1810.05165]

Permutation-invariant function of point clouds
For EFN’s, manifest IRC Safety

All models use ReLU activations with the Adam 
optimizer (α = 1e-3). Model parameters have an L2 
regularization (λ = 1e-6), and the D network output has 
an L1 regularization (λ = 1e-4)
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Jet Dataset
Using CMS Open Data:

● CMS2011AJets Collection, SIM/GEN 
QCD Jets (AK 0.5)

● Select for jets with 500 GeV < Gen pT  
< 1000 GeV, |𝜂| < 2.4, quality ≥ 2

● Select for jets with ≤ 150 particles
● Jets are rotated such that jet axis is 

centered at (0,0)
● Train on 100k jets

26

[Komiske, Mastandrea, Metodiev, Naik, Thaler, PRD 2020;
Larkoski, Marzani, Thaler, Tripathee, Xue, 1704.05066;

Cacciari, Salam, Soyez, 0802.1189;
http://opendata.cern.ch/]



Rikab Gambhir

Mutual Information
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Model I(X;Y) [Natural Bits]

DNN 1.23

EFN 1.25

PFN 1.25

PFN-PID 1.27

Preliminary

Preliminary
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Jet Energy Scales
For jets with a true pT of 700 GeV, we should 
expect well-trained models to predict 700 GeV 
on average!

28

Model Gaussian Fit [GeV]

DNN 695 ± 38.2

EFN 692 ± 37.7

PFN 702 ± 37.4

PFN-PID 693 ± 35.9

CMS Open Data 695 ± 37.4 DNN ŷ distribution for y ∈ [695, 705] GeV

Preliminary

Preliminary

Preliminary
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Jet Energy Resolution
Predicted uncertainty distributions for the 
different models  - The higher the learned 
mutual information, the better the resolution!
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Uncertainty distribution for y ∈ [695, 705] 
GeV

Model Avg Resolution [GeV]

DNN 37.1 ± 1.9

EFN 34.5 ± 2.8

PFN 35.7 ± 3.5

PFN-PID 33.3 ± 4.3

CMS Open Data 36.9 ± 1.7
Preliminary

Preliminary
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Preliminary

Conclusion
We have presented a framework useful for (all at the same 
time!):

● Estimating mutual information, a measure of the 
nonlinear interdependence between random 
variables

● Performing frequentist maximum likelihood 
inference for Y given X 

● Estimating the uncertainty on Y for said inference
● Moreover, the Gaussian Ansatz makes the above 

manifest

Given nothing but example (x,y) pairs, in a single training. 
All of these tasks are useful in high energy physics, such 
as for jet energy calibration!
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Thank you!
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Appendices
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Algorithm
Initialize a parameterized function T𝜃(x,y)

1. Draw b batch samples from P(X,Y): {(x1,y1) … (xb,yb) }
2. Draw b batch samples from P(Y): {y1’, … yb’} 
3. Compute the loss L({𝜃}) =  -1/b ∑[T𝜃(x,y)] + log(∑[eT𝜃(x,y’)])
4. Update weights 𝜃’ = 𝜃 - ∇𝜃L({𝜃}) (or use your favorite optimizer!)

When converged, -L will be a lower bound for I(X;Y), and T will contain the 
likelihood 
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Outside Uniform Prior
Prior is still U(-5, 5), extrapolate anyways

Same maximum likelihood result

Larger errors due to limited statistics

34
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Ensembles
Once we have a procedure for estimating the 
maximum likelihood Y for a measured X, can 
extend to estimating a model parameter θ given 
N data I.I.D. points Xi  - the unfolding problem.

Could potentially use this to directly estimate 
Lagrangian parameters from data!
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Multi Dimensional Test
Polar Coordinates Conversion

● Y = Uniform( (-4,-4) , (-4, 4)
● X = (r, φ) + (N(0,0.25), N(0,π/12))

φ is in the coordinate patch (-π, π)

Explains the weirdness near π

36

Y = Cartesian, X = Polar(Y) + Noise
X

Y
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Convergence Test
Simple X = Y + Gaussian Noise example

10 trials

● Red: DV Loss
● Green: F-Divergence Loss
● Yellow: F-Divergence + regularization 

Whenever the green or yellow blow up (more 
accurately, blow down), set the MI to 0.0 
because that is the best bound.
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