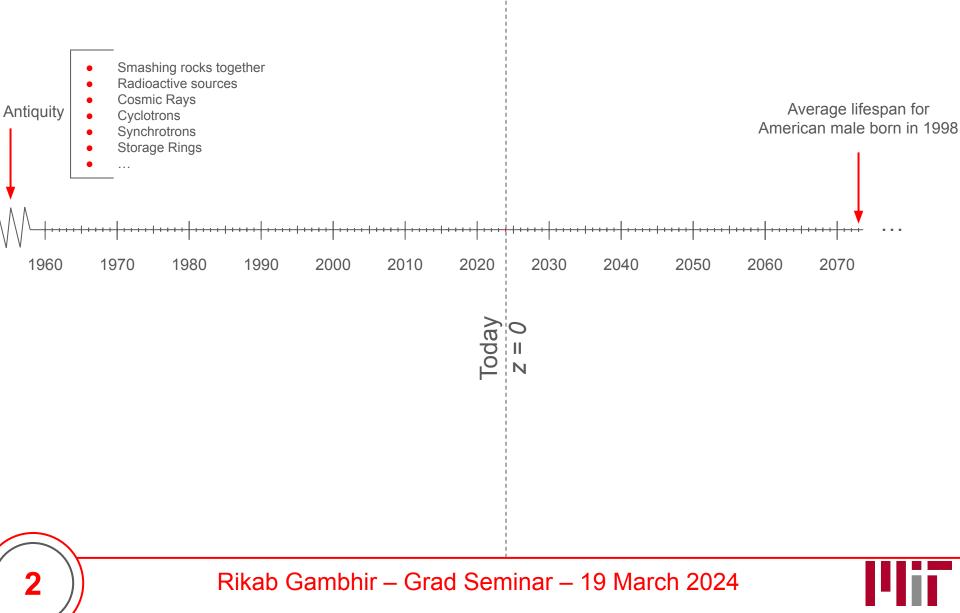
The New Physics Case for Muon Beam-Dump Experiments

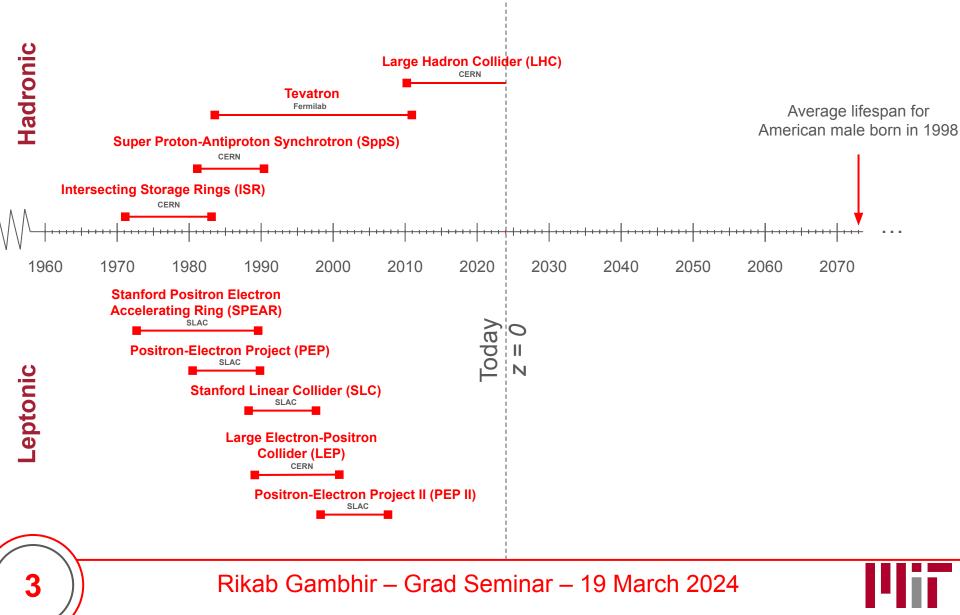
Rikab Gambhir

Email me questions at <u>rikab@mit.edu</u>! Based on [Cesarotti, **RG**, <u>2310.16110</u>]

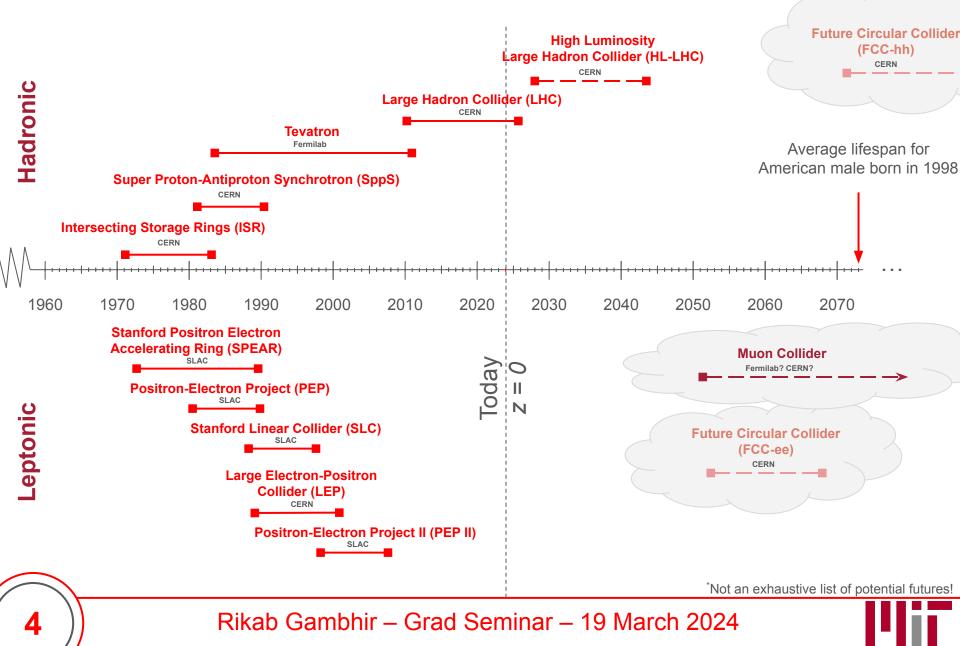
Timeline of Collider Physics



Timeline of Collider Physics: Past



Timeline of Collider Physics: Future



This is our Muon Shot" Why Muons? Achieve *much* higher energies than e⁺e⁻ 1. **Cleaner**^{*} than *pp* collisions 2. 3. "Electroweak Boson Collider" Direct probe of 2nd gen physics 4. "It's just ing cool" – Nima Arkani-Hamed, APS 2023 5. 2030 2040 2050 2060 2070 **Muon Collider** Today z = 0Fermilab? CERN? N

Not included: Heavy ion experiments, neutrino experiments, ep experiments, astronomical or cosmological observations...

Fimeline of Particle Physics

Achieve *much* higher energies than e^+e^-

"It's just ing cool" – Nima Arkani-Hamed, APS 2023

Why Muons?

1.

2.

3.

4.

5.

This is our Muon Shot"

or 1998

Road to the Future

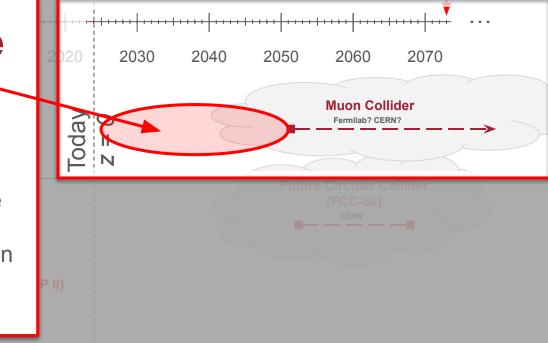
Cleaner^{*} than *pp* collisions

"Electroweak Boson Collider"

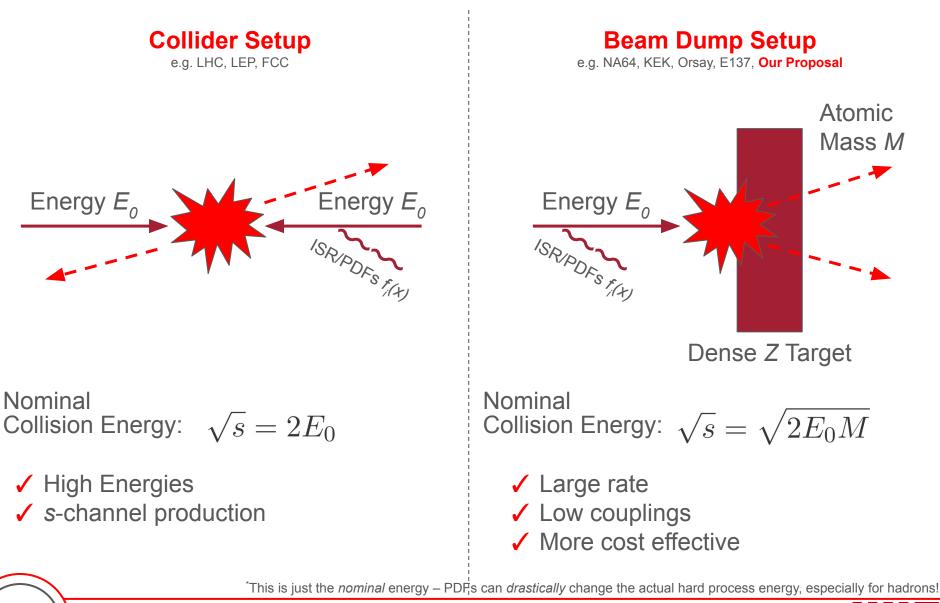
Direct probe of 2nd gen physics

Lots of R&D needed! A huge undertaking ...

This Talk: R&D is worth it, because muon test beams already have the potential for discovering **new physics**! Interesting results for muon beams as low as **10 GeV**!

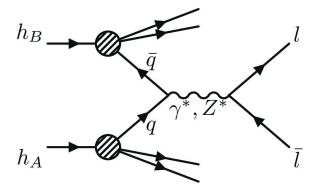


Beam Dump Fundamentals



Aside: PDFs, ISR, and FSR

Since particles radiate or can be non-perturbative, it is a lot easier to think about colliding **partons** instead.

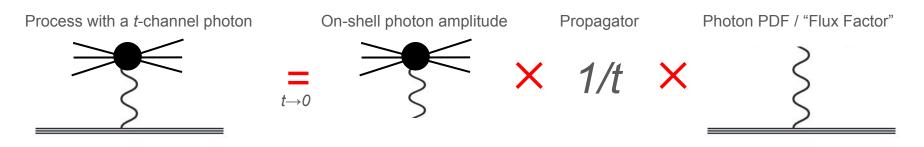


$$\sigma \; = \; \sum_{a,b} \; \int\limits_{0}^{1} \mathrm{d} x_a \mathrm{d} x_b \; \int \, f_{a/h_1}(x_a,\mu_F) f_{b/h_2}(x_b,\mu_F) \, \mathrm{d} \hat{\sigma}_{ab o n}(\mu_F,\mu_R)$$

 $f_a(x)$ = probability of finding parton *a* in the particle *h* with longitudinal momentum fraction *x*

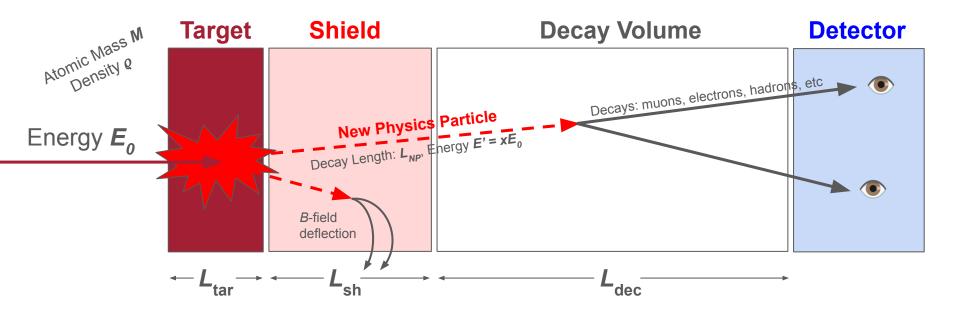
Leptons are "cleaner" than hadrons because $f(x) \sim \Box (x-1)^*$

Useful Application: Weizsäcker-Williams**



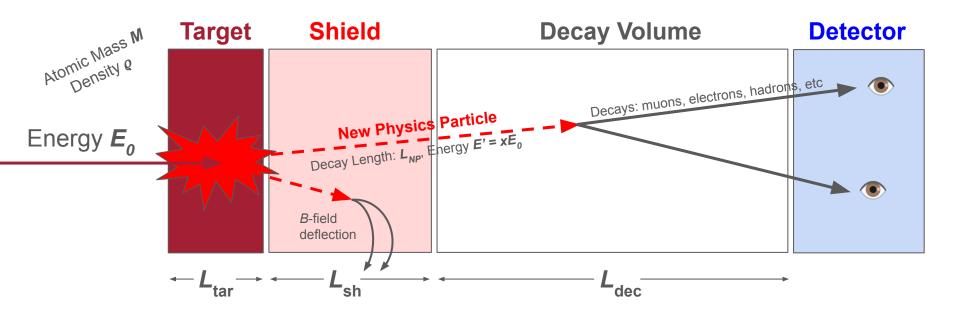
^{*}But not exactly, which leads to lots of fun with gauge bosons and jets! **Sometimes called the "Effective Photon Approximation" or "Effective Vector Approximation"

Beam Dump Fundamentals (Continued)



- **1.** Dump a muon beam into a **fixed target**, produce new particles!
- 2. Junk (residual muons, SM decays, etc) deflected and/or absorbed by shield
- **3.** New particles are boosted and collinear, fly for a distance L_{NP} before decaying to particles we can detect!

Beam Dump Fundamentals (Continued)



- **1.** Dump a muon beam into a **fixed target**, produce new particles!
- 2. Junk (residual muons, SM decays, etc) deflected and/or absorbed by shield
- **3.** New particles are boosted and collinear, fly for a distance L_{NP} before decaying to particles we can detect!

Particles can travel a long distance: $l_{\rm NP} \approx \left(\frac{E_0}{{
m TeV}}\right) \times \left(\frac{g}{10^{-6}}\right)^{-2} \times \left(\frac{m_{\rm NP}}{10 {
m MeV}}\right)^{-2} \times 100{
m m}$

Beam Dump Fundamentals (Details)

How many new particles should we expect to see^{*}?

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_0 X_0}{A} \times \mathcal{BR} \times \int_{E_{\phi}}^{E_0} \frac{dE'}{E'} \int_0^T dt \ I(E'; E_0, t) \times E_0 \frac{d\sigma}{dx'} \bigg|_{x' \equiv E'/E_0} \frac{dP(z - \frac{X_0}{\rho}t)}{dz}$$

*Assuming that the detector is wide enough to capture all emitted particles – we have chosen geometries and cutoffs such that this is approximately true. *Assuming 100% detection efficiency. *Assuming no SM backgrounds, taken care of by shields and/or absorption.

Beam Dump Fundamentals (Details)

How many new particles should we expect to see^{*}?

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_0 X_0}{A} \times \mathcal{BR} \times \int_{E_{\phi}}^{E_0} \frac{dE'}{E'} \int_0^T dt \ I(E'; E_0, t) \times E_0 \frac{d\sigma}{dx'} \bigg|_{x' \equiv E'/E_0} \frac{dP(z - \frac{X_0}{\rho}t)}{dz}$$

Number of detected particles **N** as a function of their energy fraction **x** and decay length **z**

^{*}Assuming that the detector is wide enough to capture all emitted particles – we have chosen geometries and cutoffs such that this is approximately true. ^{*}Assuming 100% detection efficiency. ^{*}Assuming no SM backgrounds, taken care of by shields and/or absorption.

Beam Dump Fundamentals (Muon Source)

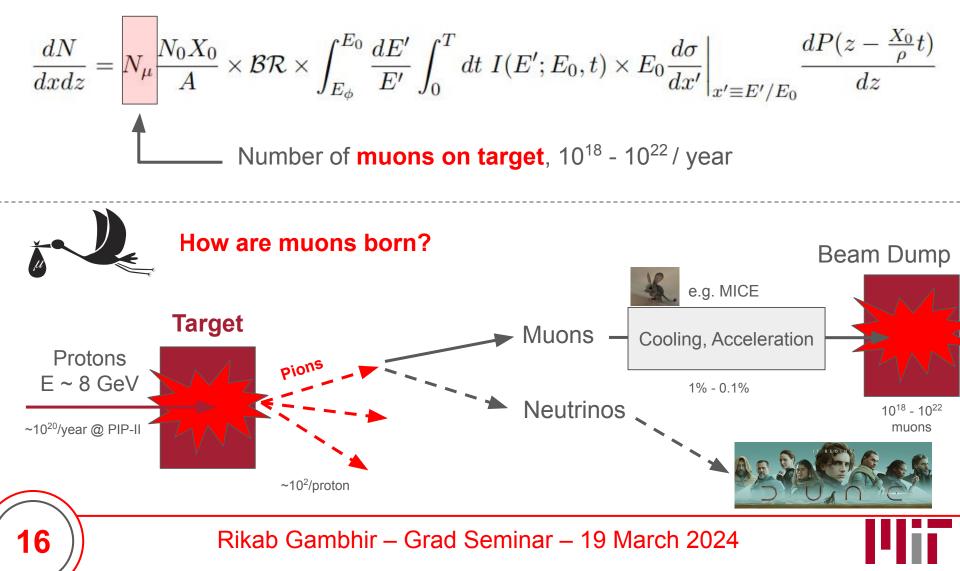
How many new particles should we expect to see?

5

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_{0}X_{0}}{A} \times \mathcal{BR} \times \int_{E_{\phi}}^{E_{0}} \frac{dE'}{E'} \int_{0}^{T} dt \ I(E'; E_{0}, t) \times E_{0} \frac{d\sigma}{dx'} \Big|_{x' \equiv E'/E_{0}} \frac{dP(z - \frac{X_{0}}{\rho}t)}{dz}$$
Number of **muons on target**, 10¹⁸ - 10²² / year

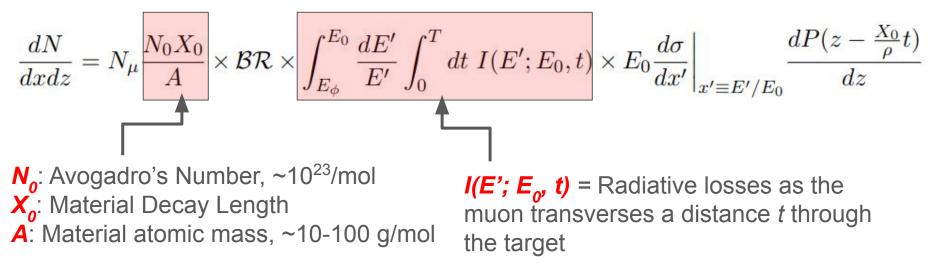
Beam Dump Fundamentals (Muon Source)

How many new particles should we expect to see?



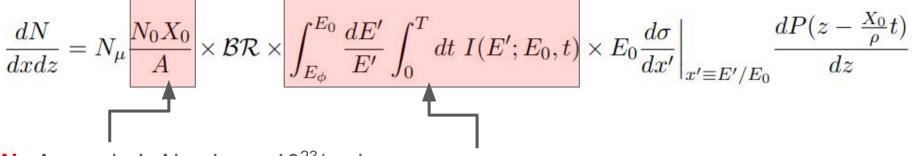
Beam Dump Fundamentals (Target)

How many new particles should we expect to see?

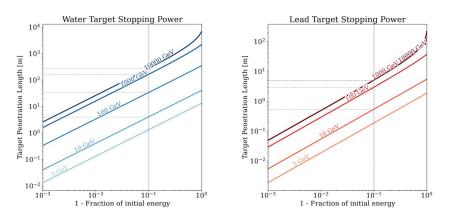


Beam Dump Fundamentals (Target)

How many new particles should we expect to see?



N_o: Avogadro's Number, ~10²³/mol
 X_o: Material Decay Length
 A: Material atomic mass, ~10-100 g/mol



I(E'; E₀, t) = Radiative losses as the muon transverses a distance *t* through the target

Thin Target Approximation: No losses

$$I(E'; E_0, t) = \delta(E' - E_0)$$

Fixes the size of L_{tar} , otherwise requires more sophisticated material modeling ...

Radiative losses for water and lead

Beam Dump Fundamentals (Decays)

How many new particles should we expect to see?

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_0 X_0}{A} \times \left| \mathcal{BR} \right| \times \int_{E_{\phi}}^{E_0} \frac{dE'}{E'} \int_0^T dt \ I(E'; E_0, t) \times E_0 \frac{d\sigma}{dx'} \Big|_{x' \equiv E'/E_0} \frac{dP(z - \frac{X_0}{\rho}t)}{dz}$$

Branching ratio into *visible* final states (electrons, muons, hadrons)^{*}

Probability of the new particle decaying at a (normalized) position *z*

$$\frac{dP(l)}{dl} = \frac{1}{L_{\rm NP}} e^{-l/L_{\rm NP}}$$

^{*}Photons not considered, but definitely possible to do in other setups! ^{*}Hadrons obtained by using *R*-ratio measurements, OK below *Z* pole. ^{*}Tau decays are possible, but to be conservative we will assume we can't reconstruct them.

Beam Dump Fundamentals (Decays)

How many new particles should we expect to see?

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_0 X_0}{A} \times \left| \mathcal{BR} \right| \times \int_{E_{\phi}}^{E_0} \frac{dE'}{E'} \int_0^T dt \ I(E'; E_0, t) \times E_0 \frac{d\sigma}{dx'} \Big|_{x' \equiv E'/E_0} \frac{dP(z - \frac{X_0}{\rho}t)}{dz}$$

Branching ratio into *visible* final states (electrons, muons, hadrons)^{*}

Probability of the new particle decaying at a (normalized) position *z*

$$\begin{split} \Gamma_{\phi \to l^+ l^-} &= g_S^2 \frac{m_\phi}{8\pi} \left(1 - \frac{4m_l^2}{m_\phi^2} \right)^{3/2} & \text{Decay} \\ \Gamma_{a \to l^+ l^-} &= g_P^2 \frac{m_\phi}{8\pi} \left(1 - \frac{4m_l^2}{m_\phi^2} \right)^{1/2} & \text{mass, for an ans, for a state of the set of the se$$

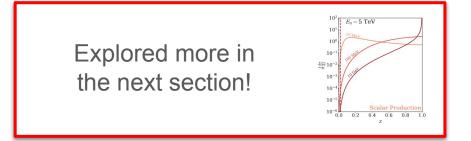
Decay lengths and branching ratios depend on new particle mass, coupling, and spin/parity $\frac{dP(l)}{dl} = \frac{1}{L_{\rm NP}} e^{-l/L_{\rm NP}}$

^{*}Photons not considered, but definitely possible to do in other setups! ^{*}Hadrons obtained by using *R*-ratio measurements, OK below *Z* pole. ^{*}Tau decays are possible, but to be conservative we will assume we can't reconstruct them.

Beam Dump Fundamentals (Cross Section)

How many new particles should we expect to see?

$$\frac{dN}{dxdz} = N_{\mu} \frac{N_{0}X_{0}}{A} \times \mathcal{BR} \times \int_{E_{\phi}}^{E_{0}} \frac{dE'}{E'} \int_{0}^{T} dt \ I(E'; E_{0}, t) \times E_{0} \frac{d\sigma}{dx'} \Big|_{x' \equiv E'/E_{0}} \frac{dP(z - \frac{X_{0}}{\rho}t)}{dz}$$
Cross section to produce new particle with an energy fraction x
Assumed to be produced collinearly, with characteristic angle: $\theta_{0} \lesssim \frac{m_{\phi}\sqrt{\max\left(\frac{m_{\mu}}{m_{\phi}}, \frac{m_{\phi}}{E_{0}}\right)}}{E_{0}}$

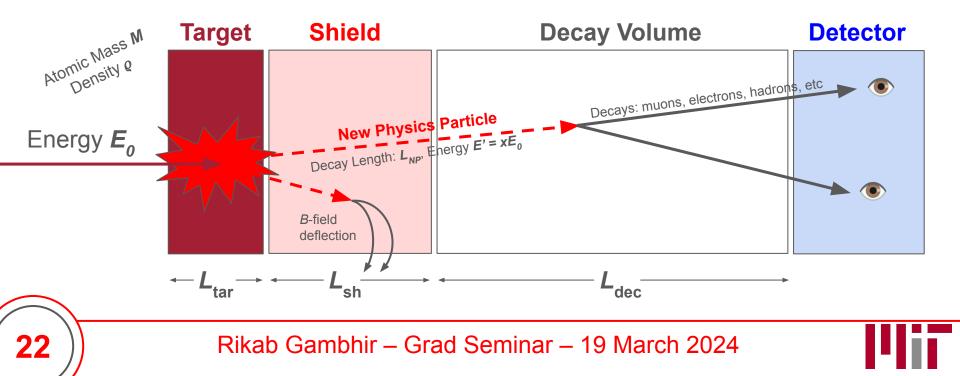


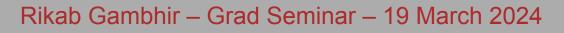
Beam Dump Fundamentals (Simplification)

Under thin target approximation, we can simplify:

$$\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{\frac{L_{\text{tar}}}{l_0}} - 1 \right) e^{-(L_{\text{tar}} + L_{\text{sh}})} \left(1 - e^{-L_{\text{dec}}/l_0} \right)$$

Explicit dependence on experiment geometry! Needs to be optimized. Final results obtained by numerical integration over x

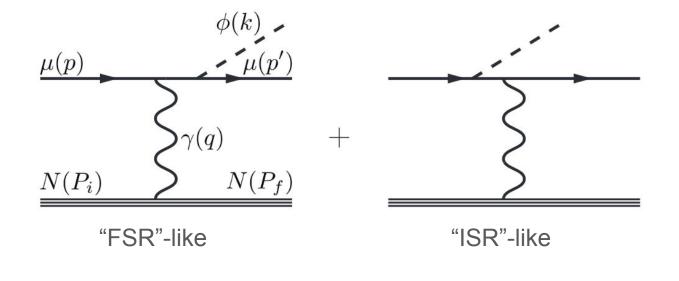




New Physics – Bremsstrahlung Production

Given a beam dump, what kind of new physics ϕ can we search for?

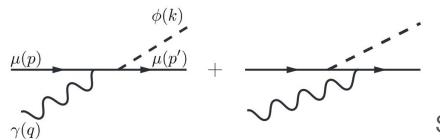
$$\mu(p) + N(P_i) \to \mu(p') + N(P_f) + \phi(k)$$



Cross Sections – Weizsäcker-Williams

2→3 scattering is hard, and nuclear physics is even harder ... use Weizsäcker-Williams!

$$\mu(p) + \gamma(q) \to \mu(p') + \phi(k)$$



25

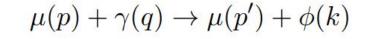
Approximation works best when the photon (virtuality *t*) is nearly on shell:

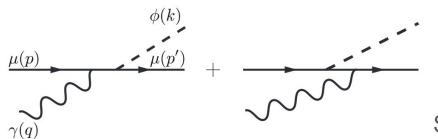
$$t_{\rm min} \approx \left(\frac{m_{\phi}^2}{2E}\right)^2$$

Sets the minimum beam energy we consider

Cross Sections – Weizsäcker-Williams

2→3 scattering is hard, and nuclear physics is even harder ... use Weizsäcker-Williams!



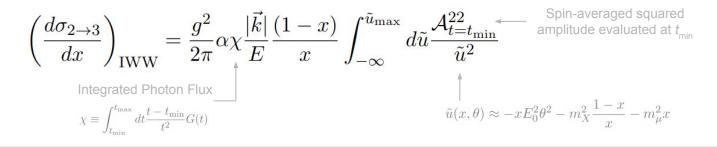


Approximation works best when the photon (virtuality *t*) is nearly on shell:

$$t_{\rm min} \approx \left(\frac{m_{\phi}^2}{2E}\right)^2$$

Sets the minimum beam energy we consider

Enhanced production when t is small – collinear emission, regulated by masses



Experiment Parameters

Target Materials	Beam Energy E_0 [GeV]	Muons On Target (μ)
Lead	10	10^{18}
Water	$63 \; (m_h/2)$	10^{20}
	$1.5 imes 10^3$	10^{22}
	5×10^3	

- Minimum beam energy chosen such that WW approximation is good
- L_{tar} chosen such that the muons lose no more than 90% of their energy
- $L_{\rm sh}^{\rm m}$ and $L_{\rm dec}$ process-dependent
- Detector radius should be chosen such that an order 1 factor of decays are captured – most are collinear, typically 10⁻² rad

All of these parameters should be optimized!

Models

Scalar

$$\mathcal{L}_{\mathrm{int}}^S \supset -ig_S \phi \bar{\psi} \psi$$

e.g. muonphilic, leptophilic scalars

Pseudoscalar $\mathcal{L}_{int}^P \supset -ig_P a \bar{\psi} \gamma^5 \psi$

e.g. muonphilic, leptophilic pseudoscalars^{*}

Vector

$$\mathcal{L}_{ ext{int}}^V \supset -ig_V V_\mu \bar{\psi} \gamma^\mu \psi$$

e.g. Dark Photons, *L*_µ - *L*_z

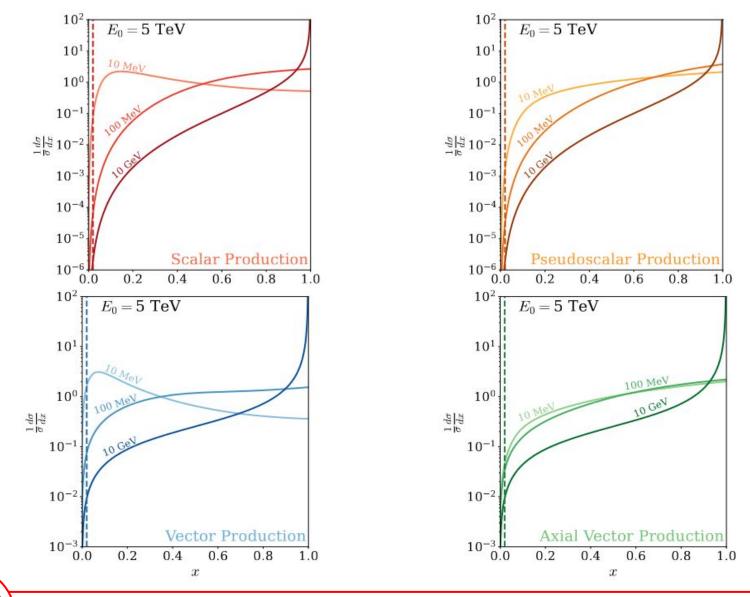
Axial Vector

$${\cal L}^A_{
m int} \supset -ig_A A_\mu ar\psi \gamma^\mu \gamma^5 \psi$$

e.g. muonphilic axial vectors

*ALPs are funny in our setup.

Models – Cross Sections



Models

Scalar

$$\mathcal{L}_{\rm int}^S \supset -ig_S \phi \bar{\psi} \psi$$

e.g. muonphilic, leptophilic scalars

Vector
$$\mathcal{L}_{\mathrm{int}}^V \supset -ig_V V_\mu \bar{\psi} \gamma^\mu \psi$$
e.g. Dark Photons, L_μ - L_τ

Dark Photons

Extend the SM with a broken U(1)' symmetry with a gauge boson Z'.

Couples to SM charged particles via kinetic mixing with the photon with parameter ε .

$$\xrightarrow{\gamma} \overset{\epsilon}{\otimes} Z'$$

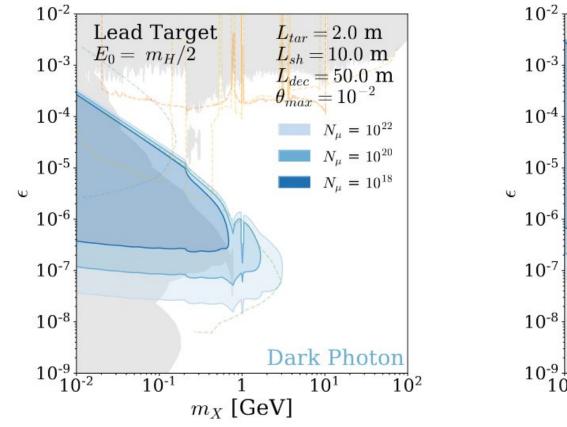
$$\mathcal{L} \supset \frac{1}{2} m_{Z'}^2 Z'^{\mu} Z'_{\mu} - \sum_{l \in e, \mu, \tau} i \epsilon e \left(\bar{l} \gamma^{\mu} l \right) Z'_{\mu}$$

Classic DM candidate!

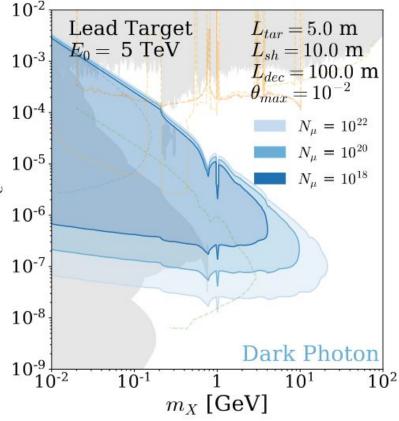
Dark photons are like light, except they're dark instead of light, and heavy instead of light

*ALPs are funny in our setup.

Results – Dark Photons



(a) Dark photon limits at $E_0 = m_h/2$.



(b) Dark photon limits at $E_0 = 5$ TeV.

Models

Scalar

$$\mathcal{L}^S_{\text{int}} \supset -ig_S \phi \bar{\psi} \psi$$

e.g. muonphilic, leptophilic scalars

Vector $\mathcal{L}_{\mathrm{int}}^V \supset -ig_V V_\mu \bar{\psi} \gamma^\mu \psi$ e.g. Dark Photons, L_μ - L_τ

Muonphilic

Model where the new scalar *only* couples to muons.

$$\mathcal{L} \supset \frac{1}{2} m_{\phi}^2 \phi^2 - i \left[g_{\mu} \bar{\mu} \mu + g_e \bar{e} e + g_{\tau} \bar{\tau} \tau \right] \phi$$

Can be generated by the dim 5 operator:

 $\phi LH\mu^c$

Can also arise as a Higgs-like coupling with $g_{\ell} \sim m_{\ell}/\Lambda$ with:

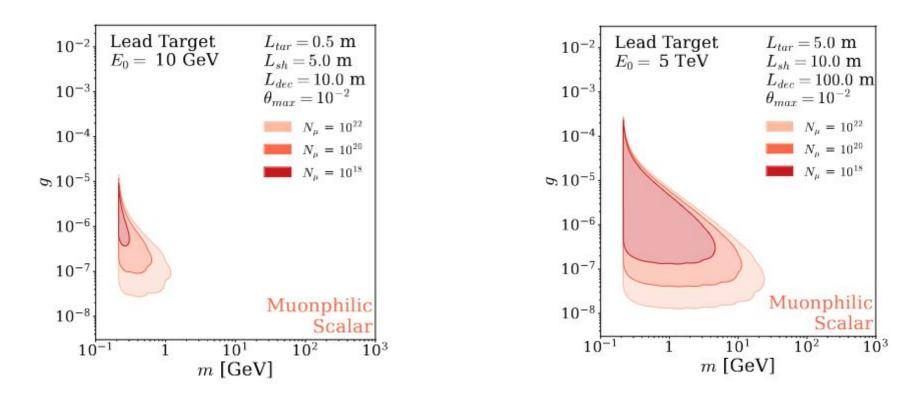
 $m_e \ll m_\mu$ and $m_\phi < m_\tau$

Muonic experiments probe muonic couplings!

See [1902.07715] for example UV completions Can arise in e.g. Type III 2HDM

*ALPs are funny in our setup.

Results – Muonphilic

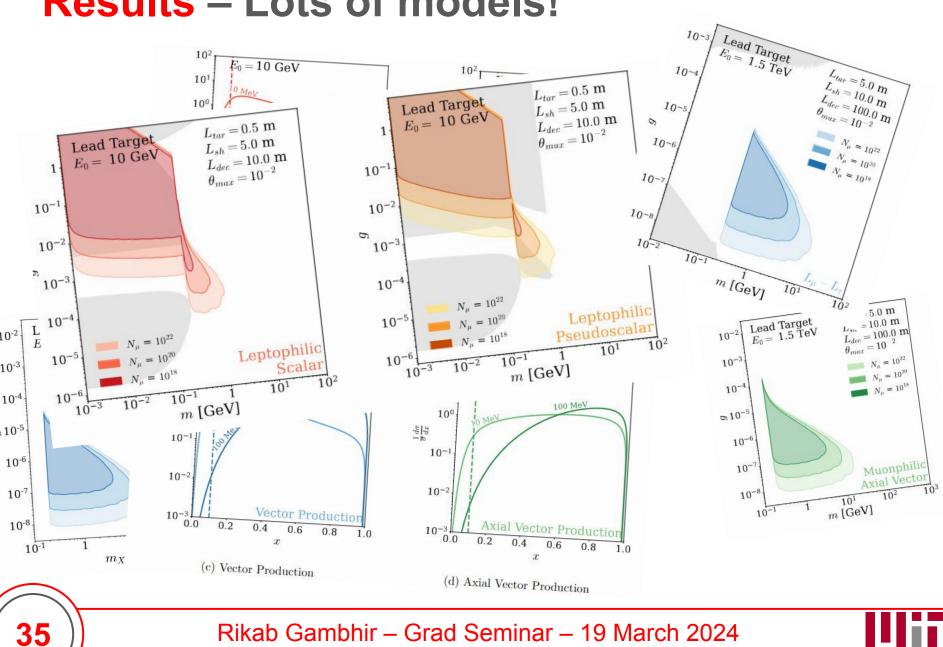


Muon specific coupling, no other limits in this range!

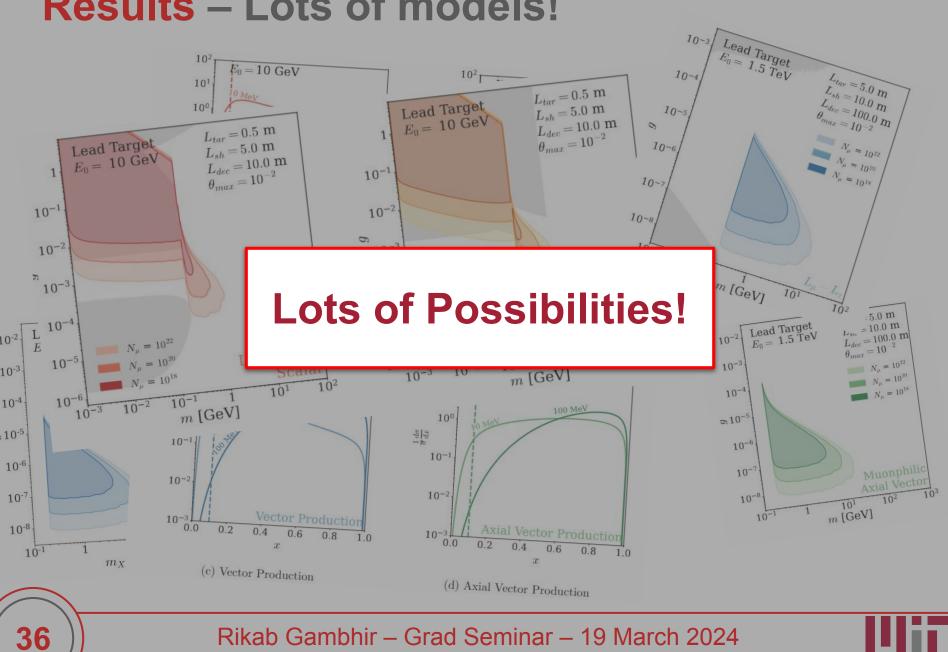
Results – Muonphilic



Muon specific coupling, no other limits in this range!



Results – Lots of models!



Results – Lots of models!

Experimental Considerations

Lots of things to explore when doing this "for real" – these were first steps!

- **Backgrounds**: We assumed no backgrounds. A more sophisticated analysis would need to include these, and other techniques could be used to tag backgrounds without using shields.
- Other Visible Signatures: We do not consider photons, taus, MET, jet substructure, tracking, or any other visible signatures that can improve sensitivity.
- **Statistics**: Our contours are drawn assuming that 5 signal events over 0 background is a discovery. A more thorough limit setting procedure can be done.
- Materials: We use the thin target approximation and consider only lead and water much more can be done with this!
- **Detector Effects**: Requires a thorough simulation.

Conclusion

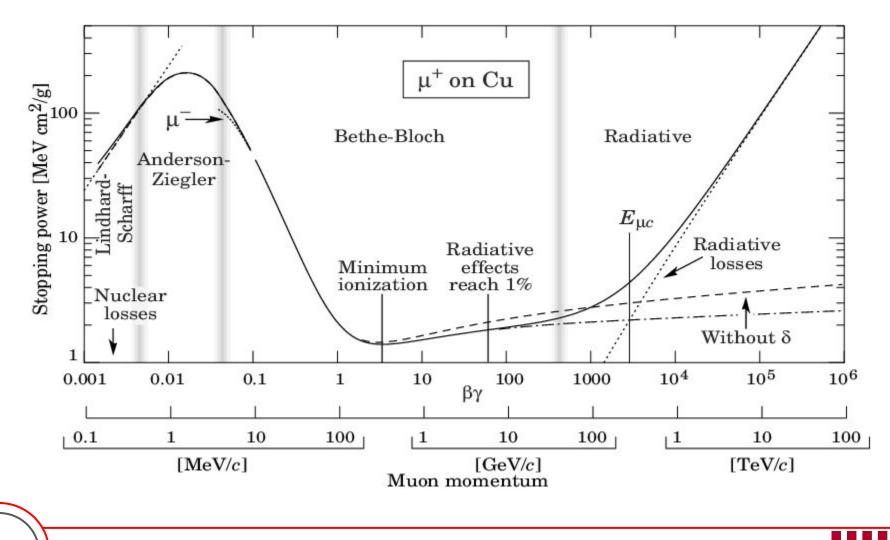
"This is our Muon Shot"

A **muon beam-dump experiment** provides an excellent opportunity for **new physics** on the road to a **muon collider**

New physics is possible *now* with as low as a **10 GeV** muon beam at a demonstrator facility! We don't need to wait.

Atomic Mass M Target Shield **Decay Volume Detector** Density Q Decays: muons, electrons, hadrons, etc **New Physics Particle** Energy **E**_o Decay Length: L_{NP} , Ehergy $E' = xE_0$ B-field deflection **_**sh dec tar Rikab Gambhir – Grad Seminar – 19 March 2024 38

Muon Stopping Power



Full Cross Section Formulas

$$\begin{pmatrix} \frac{d\sigma_{2\to3}(p+P_i \to p'+k+P_f)}{d(p\cdot k)d(k\cdot P_i)} \end{pmatrix}_{\rm WW} = \left(\frac{\alpha\chi}{\pi}\right) \left(\frac{E_0 x \beta_\phi}{1-x}\right) \times \left(\frac{d\sigma_{2\to2}(p+q \to p'+k)}{d(p\cdot k)}\right)_{t=t_{\rm min}} \\ \left(\frac{d\sigma_{2\to3}}{dxd\cos\theta}\right)_{\rm WW} = \frac{g^2}{2\pi} \alpha |\vec{k}| E(1-x) \frac{\mathcal{A}_{t=t_{\rm min}}^{22}}{\tilde{u}^2} \chi$$

$$\begin{split} \mathcal{A}_{S,t=t_{\min}}^{2\to2} &\approx \frac{x^2}{1-x} + 2(m_{\phi}^2 - 4m_{\mu}^2)\frac{\tilde{u}x + m_{\mu}^2(1-x) + m_{\mu}^2x^2}{\tilde{u}^2} \\ \mathcal{A}_{P,t=t_{\min}}^{2\to2} &\approx \frac{x^2}{1-x} + 2m_a^2\frac{\tilde{u}x + m_{\mu}^2(1-x) + m_{\mu}^2x^2}{\tilde{u}^2} \\ \mathcal{A}_{V,t=t_{\min}}^{2\to2} &\approx 2\frac{2-2x+x^2}{1-x} + 4(m_V^2 + 2m_{\mu}^2)\frac{\tilde{u}x + m_{\mu}^2(1-x) + m_{\mu}^2x^2}{\tilde{u}^2} \\ \mathcal{A}_{A,t=t_{\min}}^{2\to2} &\approx \frac{4m_{\mu}^2x^2}{(m_A^2)(1-x)} + 2\frac{2-2x+x^2}{1-x} + 4(m_A^2 - 4m_{\mu}^2)\frac{\tilde{u}x + m_{\mu}^2(1-x) + m_{\mu}^2x^2}{\tilde{u}^2} \end{split}$$