Pictured: Best EFN Latent Space (Left); Best k=4 Moment EFN Latent Space (Right) for quark/gluon discrimination

Moment Pooling:

Gaining Performance and Interpretability Through
Physics Inspired Product Structures

Rikab Gambhir

With Athis Osathapan and Jesse Thaler

Email me questions at rikab@mit.edul!
Based on [RG, Osathapan, Thaler, 23XX.XXXX]
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[Komiske, Metodiev, Thaler, 1810.05165]

Typical Machine Learning Setup

Contours of the L different latent representations, ¢

1.0
0.8 -
g
E 0.6 1 Quark vs. Gluon Jets
g PYTHIA 8.230, /s = 14 TeV
= R =04, pr € [500,550] GeV
Lar'}
g 0.4 1
=
&)
= PFN-ID
0.24 =—— PFN-Ex
—— PFN-Ch EFN
— PFN EFPs
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

Collider Data — Latent Space — Observables

~1000 Dimensional ~10-100 Dimensional ~1-10 Dimensional

Pictured: An Energy Flow Network (EFN):
Particle weight: Energy Fraction
M|

O({p1s---»pm}) = F [ D zP(p:)

=1
L-dimensional latent representation, per particle
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https://arxiv.org/abs/1810.05165

[Komiske, Metodiev, Thaler, 1810.05165]

Typical Machine Learning Setup

1.0
0.8
:é}oﬁ 4 Quark vs. Gluon Jets
= PYTHIA 8.230, /s = 14 TeV
E‘ R = 0.4, pr € [500,550] GeV
§ 0.4
° — PFN-ID
024 =—— PFN-Ex
—— PFN-Ch EFN
— PFN EFPs
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Quark Jet Efficiency
Collider Data —» Latent Space Observables
~1000 Dimensional ~10-100 Dimensional ~1-10 Dimensional
Pictured: An Energy Flow Network (EFN): (How) can we understand and

M constrain this?
i—1 (How) can we be more efficient?
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https://arxiv.org/abs/1810.05165

The Moment-EFN

L a EFNs” can be thought of as taking the (weighted)
O(P) = F (<¢ >73) mean of a latent particle representation ¢ — Let’s

generalize to any moment!

Generalize!

Or(P) = Fi ((¢%)p , (0" 0% ) 5, .os (071..0%) )

This is a natural way to encode multiplication of distributions in neural nets.

Hope: This “Moment-EFN” might give more efficient representations?!

/\ "Most of what | say here today also applies to Particle Flow networks or any other Deep-Sets inspired architecture!
N
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The Moment-EFN (Details)
r Set of momenta F a=1... L, the Latent Dimension index

_ a The Deep Sets Theorem guarantees that any
O(P) = F (<¢ >73) function on sets # can be written this way, for

L “sufficiently complex” F and ¢
()p = 2p(p:)

Generalize!

k = Highest order moment considered

—
Ok(P) = Fi ((9%)p, (0“1 0%) p , s (071...0%) )

18t Moment 2" Moment k™" Moment |

I ‘_]\"—I—l k+ L
AR A |

Hope: This “Moment-EFN” might give more efficient representations?!
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5 ) Rikab Gambhir — BOOST — 02 August 2023 n |||| [




More precisely ...

“More efficient representation” means ¢, F could be...

1. Simpler elementary functions? e.qg. linear ¢, F

2. More simply parameterized? i.e. Fewer total parameters
3. Easier to embed? i.e. Smaller L, fewer ¢ functions

Or(P) = Fi ((¢%)p » (0" 02 )p 5 e (7 .0%%) )

Hope: This “Moment-EFN” might give more efficient representations?!




NSF Al Institute for
Artificial Intelligence & Fundaqmental Interactions
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Energy/Particle Flow Network

IRC-safe Neural Networks

Extending Deep Sets to Distributions [Energy Flow Networks, 1810.05165]

[Histogram Pooling, M. Cranmer et. al.]

Moment-EFNs

OR(P) = Fy, <<¢a>73 ) <¢a1¢a2>73 ymeey <¢a1---¢ak>73>

p “G'\ R Using su.mm.ary_statist.ics. of
4 2l A 4 2| energy distributions within
NS events to improve

information per latent
dimension

MPA Latent Space: k = 3, L = 32

MPA Latent Space: k = 4, L = 16 R

2
N

Azimuthal Angle ¢
Azimuthal Angle ¢
°
Azimuthal Angle ¢
°

2
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0. -R/2 0 R/2
Rapidity y Rapidity y

Same Information



https://simdl.github.io/files/40.pdf
https://arxiv.org/abs/1810.05165

e.g. Jet Angularities

In the moment language, even integer f jet angularities < k = " moments!

AB(P) = "z (2 + d)?)ﬁ/z For the normal (k = 1) EFN,

zﬂ , this would require learning
=(1")p +(¢”)p + Cross Moments | uo o060 tions!

Test: Train three networks to regress A?) from 100k QCD jet samples, with a latent
dimension L:

e Linear Network: ¢, F are 1 layer, linear functions, L =2
e Small Network: ¢, F are 2 layers, each with 4 nodes and LeakyRelLU, L =2
e ‘“Large” Network: ¢, F are 3 layers, each with 32 nodes and LeakyRelLU, L =8

Expect k = 2 to outperform k = 1 for smaller networks!

/\ "Ask later about non-even or non-integer 8 angularities |
H
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e.g. Jet Angularities

In the moment language, even integer f jet angularities < k = " moments!

XOP) =z (n? + ¢2)°"?

Probability Density
o o B r e =
o N = N w ~
o u S) o o Il

©
N
%)

o
=3
S

(3

- <77ﬂ>7) o <¢ﬁ>7) + Cross Moments

Linear Networks

Small Network: EFN vs. 2"?-Moment EFN

EFN

100k Samples d
¢ 2"Y-Moment EFN

Linear Networks

1
1
A Pl
“a 2 0 2 4
Percent Error: Au;}j‘m x 100

~10 Parameters

Probability Density

o
N
%)

o
N
[S]

(=]
=
v

o
=
o

o
)
o

o
o
[S]

For the normal (k= 1) EFN,
this would require learning

Small Networks

Small Network: EFN vs. 2"?-Moment EFN
]

1 ' EFN
100k Samples 1 -
©:[4,4,2] i 2"d-Moment EFN
F:[4,4,1] i
LeakyRelU 1
1
1
1
1
1
4
“J”
I |-||'|
1
.IJ 1 ]
1
1 1
1
1
1
1
1
|
-4 -2 0 2 4

AR — @)
Percent Error: 221~ x 100

~100 Parameters

Probability Density

nonlinear functions!

Large Networks

Large Network: EFN vs. 2"9-Moment EFN

T
! EFN
100k Samples ] 5
1.2{ ©:[32,32,32,8] 2"d-Moment EFN
F:[32,32,32,1]
LeakyRelLU ]
1.0 :
1
1
1
0.8 !
1
1
]
0.6 1
|
|
0.4 |
|
|
L
0.2 i
0.0 -
-4 -2 0 2 4

@@
Percent Error: 221~ x 100

~6000 Parameters

Training times are identical for k =71 and 2!
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Learns the simplest latent representations!

Y=g

T

02 04 ; ; Y 02 04
Encourage learning a diagonal basis in (5,¢) using L1 Regularization on F

Linear Networks

Small Network: EFN vs. 2"?-Moment EFN

EFN
2"_Moment EFN

e
1}
v

100k Samples
Linear Networks

Probability Density
=] o = = -
o ~ = N O
o w o w o

o
N
v

o
=3
S

AR _p@)
Percent Error: =71~ x 100




... At least one case where moment pooling gives “more interpretable” and

“more accurate” networks!




A more complex task ...

In principle, with a large enough k, we can approximate any observable with a
linear F — just like we did with angularities!

Is it possible to simplify complex O(P) = Fo (¢°)p

observables, like a Q/G discriminant”™, + P a, (90 0") 5
into linear F networks with just a few + Fayagay (6™ 6™26%)
powers of k? n '

Train many Q/G of different sizes for different values of k, and see if k > 1 can be
used to build linear functions, with less parameters, and with a smaller latent
dimension!

"For well-behaved functions

/\ “For classification tasks, we linearize the log likelihood and apply a sigmoid or softmax at the end |
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Quark/Gluon Discrimination

2.975x 107!

2.95 x:1071

2.925x 107!

2.9x107!

2.875% 107"

1-AUC

2.85x107!

2.825x 1071

2.8 %107t

Model Performance vs. Complexity

Model Performance vs. Complexity

47
¢ EFN 2.8 %1071 i + ¢ EFN
¢ k=2 k=2
¢ k=3 | 26x107; ® $ k=3
t b ke 2.4x10-1-/ o } b k=4
[ 2 .0. o l + + P*+
o+ ot "..0 t‘ i I ® 0. +++ h ++
IREN SALL gt i +
N\ | \0‘ *+
5 2y ¢
) Q X
v +¢¢ ¢
Linear F Network _Arbitrary F Network _
102 102 10° 104

103 104

Model Parameters

Model Parameters

Saturates at AUC ~ 0.88, consistent with 1810.05165!

See backup slides for training details and dataset details.

If we have time — see backup for performance versus latent dimension! Same performance for lower latent dlmenS|ons'

=
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https://arxiv.org/abs/1810.05165

Quark/Gluon discriminators are
inherently complex! We can’t reduce
them to linear functions’ like with
angularities — some problems are
irreducibly hard.

Moments also don’t reduce the number
of necessary model parameters —

“information is conserved” in difficult
problems!

.. But we can still do better!

"Not all simple functions are ruled out, e.g. Padé approximants on F

2.8 x10-1 rin
2.6 %1071

24 %1071

2.2x 1071

2x 1071

1.8 x 101

1.6 x 10714

1.4 x 1071

Model Performance vs. Complexity

EFN
¢ o

2
k=3
k=4

L‘* A

_Arbitrary F Network_

102 103 10"'
Model Parameters



https://arxiv.org/abs/1810.05165

Quark/Gluon Latent Spaces

Let’s look at the latent space embeddings!

You get much better
performance at a
given L, especially at
low L

Better peak
performance!

This was visible in the previous plots too, but
much easier to see here T

0.261

0.24

0.221

0.20+

1-AUC

0.16
0.14

0.121

Model Performance vs. Complexity

0.181

3 —+— EEN
\\\ k=2
\'\ 4—‘ k = 3
—4— k=4
\ ‘
\ &
\ 1%)

10! 102

Latent Dimension L

10°

As k goes up, you can
get away with a much
lower dimensional ¢
embedding!

15)
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Quark/Gluon Latent Spaces

Let’s look at the latent space embeddings!

Model Performance vs. Complexity

0.261 |
You get much better o oo EFNZ As k goes up, you can
_performance_at a 0.241 o k;3 get away with a much
given L, especially at e . k=4 | lowerdimensional ¢
low L & embedding!
o 020 &
= Q
<
. 0.18]
The same information
e ! is being more
N\
Better peak 0.1 #\ compactly encoded,
N |
performance! 1 = S completely losslessly!
This was visible in the previous plots too, but 0 12 1 \‘\’:.i’__'_‘.
much easier to see here VU
!

10° 101 102
Latent Dimension L
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Aside, if we have time: o
The Effective Latent Space NG

Mq@del Performance vs. Complexity
The moment structure allows for — ' ~§- iF—NZ
information to be more efficiently 0.24] \ v -
encoded and decoded. —+ k=4
0.22
i i i k+1(k+ L
This encoding and decoding can _— e s e ( I >
be incredibly complicated — 9 | L \k+1
moments help by allowing neural j 0.18 \ &
networks to do multiplication! \ e
Q
0.16-
The complexity is reflected in the &l
very large effective latent
dimension — the number of 0.121
combinations of all moments. o1 o2 e
Effective Latent Dimension Les

N The info stored in a tiny L can be unraveled to L ., but info is conserved!
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Latent Spaces

EFN (k= 1) k=2
L=64
MPA Latent Space: k =1, L = 128 MPA Latent Space: k =2, L = 64

AN J
Model Performance vs. Complexit ‘ Y

Azimuthal Angle ¢

A
&
=)
=5
<<
©
£
=
=
£

Rapidity y

k=4

Azimuthal Angle ¢
Azimuthal Angle ¢

10t
Latent Dimension L

Rapidity y

The 45% - 55% contours of each of the L different ¢ functions




Latent Spaces

EFN (k=1) k=2
L=1 L=1

R MPA Latent Space:k=1,L=1 R MPA Latent Space: k =2,L =1

S
X
=)
<
<
©
R
=
S
£

Azimuthal Angle ¢

0 R/2 i - 0 R/2
Rapidity y Rapidity y

k=4
L=1

R MPA Latent Space: k=3,L=1 R MPA Latent Space: k =4, L =1

Azimuthal Angle ¢
Azimuthal Angle ¢

10t
Latent Dimension L

-R/2 0 R/2

Rapidity y Rapidity y

The contours of each of the L different ¢ functions



The Moment(s) of

—— Latent Space

Tr t I ] Fit: c1 + c2log(cs +y)

Just a single (radially symmetric!)
function ¢ ~ f(r) ~ log(r)

Latent Embdedding ¢(y, 0)

Radial
. Profile
Simply compute the average .

values of ', ¢?, ¢3, ¢* on each

event (akin to angularities), and
feed these 4 numbers™ through a
simple neural net F.
This alone is enough to get an

IRC-safe quark-gluon classifier

with an AUC ~ 0.83!

‘I apologize if | have repeated this same joke in other contexts during this talk.

It would have been an even better joke if | had used top samples here.

“Interestingly, an EFN with L=4 has roughly the same performance, suggesting it learns something equivalent to
this one function




Conclusion

L Email me questions at rikab@mit.edu! \

{94 0%)p)

1. Simpler elementary functions? <~

Hope: The “"Moment-EFN” gives more efficient representations!

Or(P) = Fi (<¢a>73 ; <§ba1¢a2>7? e

“More efficient representation” means ¢, F could be...

Latent Embdedding ¢(y, 0)

for complex ones

2. More simply parameterized? X No, independent of k

3. Easier to embed? / Yes! Much smaller L’s for larger k

1.00

0.75

0.50

0.25

0.00

-0.25

—0.50

MPA Latent Space: k=4,L=1

Radial
Profile

—— Latent Space
Fit: c1 + calog(cs +y)

~log(r)

0.0

Yes for simple observables, maybe

Model Performance
6

0.1 0.2 0.3 0.4
Rapidity y

vs. Complexity

. —— EFN
024] \ k=2
\ e =3
22 \ —+— k=4
\\‘
20 L\
= \
0,18 \
— .
\ S
0.16] "\ ‘\
14 LN
s .
012 ==+~
10° 10
Latent Dimension L
——
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Appendices
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Aside, if we have time:

Attention is all you need

The
Law
-wil

perfect

=

never
g DU
its

be

application
missing
“= opinion
<EOS>
<pad>

'''''

pinion =~

A
(2,
o]
L
v
37

O

~ (9%10%)p

o
3
v

62

[Vaswani et. al., 1706.0

Can view moment pooling as a multi-headed self-attention-like mechanism

Each latent variable weights each other latent variable
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https://arxiv.org/abs/1706.03762

Analytic
Observables

Define ¢(r) = 1 + 0.5log(r + 0.01)

Feed the first 4 moments to a
simple DNN — AUC of ~0.82!
Angularities AUC ~0.75.

= < o =
-~ o © =)

Gluon Jet Rejection

2
o

— ~log(r)
—— Angularities

e
==

.0 0.2 0.4 0.6 0.8 1.0
Quark Jet Efficiency

Latent Embdedding ¢(y, 0)

MPA Latent Space:k=4,L=1
—— Latent Space

Fit: c1 + czlog(cs +y)

Radial
Profile

0.2 0.3
Rapidity y

MPA*Latent Space: k =4, L =1

0.4
1




Angularities Study (Details)

Dataset:

14 TeV Z+jet[g, uds] events generated in Pythia 8.226

Jets clustered using AK4 (Fastjet 3.3.0)

Keep p, between 500 GeV and 550 GeV, |y| < 1.7

100k Train, 2.5k Val, 2.5k Test

Angularities normalized to unit mean and standard deviation
Particle p; normalized to one.

Training:

Batch Size: 512
Epochs: 100
Optimizer: Adam with learning rate 0.001

o
o
o
/\ . . N
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Q/G Study (Details)

Same dataset as angularity study, but with 500k training samples

Foreachof k=1 ... 4:

1. Choose random integers FSize and Deire from1...128,and Lfrom1 ... L

where Lmax= 128 for k = 1,64 for k = 2, 32 for k = 3, and 16 for k = 4.

a. Choose such that the number of network parameters is uniform in log scale.
b. Forthe linear F study, set F_,_=1.

Initialize N = 3 Moment-EFNs (with different seeds), where the F and ¢

networks have three layers of the above size and latent dimension L.
a. Forthe linear F study, instead choose the F network to be a single linear layer.

Train all N Moment-EFNs, using BCE loss, with the same hyperparameters
are the angularities study. Record their AUCs.

Record the mean and standard deviation of the N AUCs and plot a single
point. Repeat for 25 total points.

max’

2
3
4
/\ . _ -
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