Pictured: Best EFN Latent Space (Left); Best k=4 Moment EFN Latent Space (Right) for quark/gluon discrimination

Moment Pooling: Gaining Performance and Interpretability Through Physics Inspired Product Structures

Rikab Gambhir With Athis Osathapan and Jesse Thaler

Email me questions at rikab@mit.edu! Based on [**RG**, Osathapan, Thaler, 23XX.XXXX]

Typical Machine Learning Setup

Pictured: An Energy Flow Network (EFN):

$$\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^{M} z_i \Phi(\hat{p}_i)\right)$$

L-dimensional latent representation, per particle

Typical Machine Learning Setup

The Moment-EFN

 $\mathcal{O}(\mathcal{P}) = F\left(\langle \phi^a \rangle_{\mathcal{P}}\right) \quad \stackrel{\text{EFNs}^*}{\text{mean of a latent particle representation } \phi - \text{Let's generalize to } any \text{ moment!}$ $\mathcal{O}(\mathcal{D}) = E\left(\langle \phi^a \rangle_{\mathcal{P}}\right) \quad \langle \phi^a \rangle_{\mathcal{P}} = \langle \phi^a \rangle_{\mathcal{P}}$

$$\mathcal{O}_k(\mathcal{P}) = F_k\left(\langle \phi^a \rangle_{\mathcal{P}}, \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}, ..., \langle \phi^{a_1} ... \phi^{a_k} \rangle_{\mathcal{P}}\right)$$

This is a natural way to encode **multiplication** of distributions in neural nets.

Hope: This "Moment-EFN" might give more efficient representations?!

*Most of what I say here today also applies to Particle Flow networks or any other Deep-Sets inspired architecture!

The Moment-EFN (Details)

Hope: This "Moment-EFN" might give more efficient representations?!

The Moment-EFN (Details)

Nomen

More precisely ...

"More efficient representation" means ϕ , F could be...

- **1.** Simpler elementary functions? *e.g. linear* ϕ , *F*
- 2. More simply parameterized? *i.e. Fewer total parameters*
- **3.** Easier to embed? *i.e.* Smaller L, fewer ϕ functions

k = Highest order moment considered -

that any

way, for

Moment

 $\mathcal{O}_k(\mathcal{P}) = F_k\left(\langle \phi^a \rangle_{\mathcal{P}}, \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}, ..., \langle \phi^{a_1} ... \phi^{a_k} \rangle_{\mathcal{P}}\right)$

Momen

 $L_{\text{eff}} = \frac{k+1}{L} \binom{k+L}{k+1} -$

Hope: This "Moment-EFN" might give more efficient representations?!

Rapidity y

NSF AI Institute for Artificial Intelligence & Fundamental Interactions

Moment-EFNs

Same Information

Using summary statistics of energy distributions within events to improve information per latent dimension

e.g. Jet Angularities

In the moment language, even integer^{*} β jet angularities $\Leftrightarrow k = \beta^{\text{th}}$ moments!

$$\lambda^{(\beta)}(\mathcal{P}) = \sum_{i} z_{i} \left(\eta_{i}^{2} + \phi_{i}^{2}\right)^{\beta/2}$$
$$= \left\langle \eta^{\beta} \right\rangle_{\mathcal{P}} + \left\langle \phi^{\beta} \right\rangle_{\mathcal{P}} + \text{ Cross Moments}$$

For the normal (k = 1) EFN, this would require learning nonlinear functions!

Test: Train three networks to regress $\lambda^{(2)}$ from 100k QCD jet samples, with a latent dimension *L*:

- Linear Network: ϕ , *F* are 1 layer, linear functions, *L* = 2
- Small Network: ϕ , *F* are 2 layers, each with 4 nodes and *LeakyReLU*, *L* = 2
- "Large" Network: ϕ , F are 3 layers, each with 32 nodes and LeakyReLU, L = 8

Expect k = 2 to outperform k = 1 for smaller networks!

*Ask later about non-even or non-integer β angularities

e.g. Jet Angularities

In the moment language, even integer^{*} β jet angularities $\Leftrightarrow k = \beta^{\text{th}}$ moments!

$$\lambda^{(\beta)}(\mathcal{P}) = \sum_{i} z_{i} \left(\eta_{i}^{2} + \phi_{i}^{2}\right)^{\beta/2}$$
$$= \left\langle \eta^{\beta} \right\rangle_{\mathcal{P}} + \left\langle \phi^{\beta} \right\rangle_{\mathcal{P}} + \text{ Cross Moments}$$

For the normal (k = 1) EFN, this would require learning nonlinear functions!

Training times are identical for k = 1 and 2!

e.g. Jet Angulari

Learns the simplest latent representations!

Training times are identical for k = 1 and 2!

A more complex task ...

In principle, with a large enough k, we can approximate any^{*} observable with a **linear** F – just like we did with angularities!

Is it possible to simplify complex observables, like a Q/G discriminant^{**}, into linear *F* networks with just a few powers of *k*? $\mathcal{O}(\mathcal{P}) \approx F_a \langle \phi^a \rangle_{\mathcal{P}}$ $+ F_{a_1 a_2} \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}$ $+ F_{a_1 a_2 a_3} \langle \phi^{a_1} \phi^{a_2} \phi^{a_3} \rangle_{\mathcal{P}}$ $+ \dots$

Train many Q/G of different sizes for different values of k, and see if k > 1 can be used to build linear functions, with less parameters, and with a smaller latent dimension!

^{**}For classification tasks, we linearize the log likelihood and apply a sigmoid or softmax at the end

Quark/Gluon Discrimination

See backup slides for training details and dataset details. If we have time – see backup for performance versus latent dimension! Same performance for *lower* latent dimensions!

Quark/Gluon Discrimination

Quark/Gluon discriminators are inherently complex! We *can't* reduce them to linear functions^{*} like with angularities – some problems are irreducibly hard.

Moments also don't reduce the number of necessary model parameters – "information is conserved" in difficult problems!

... But we can still do better!

*Not all simple functions are ruled out, e.g. Padé approximants on F

Saturates at AUC = 0.88, consistent with 1810.05165

See backup slides for training details and dataset details.

If we have time - see backup for performance versus latent dimension! Same performance for lower latent dimensions!

Quark/Gluon Latent Spaces

Let's look at the latent space embeddings!

Quark/Gluon Latent Spaces

Let's look at the latent space embeddings!

Aside, if we have time: The Effective Latent Space

The moment structure allows for information to be more efficiently encoded and decoded.

This encoding and decoding can be incredibly complicated – moments help by allowing neural networks to do multiplication!

The complexity is reflected in the very large **effective latent dimension** – the number of combinations of all moments.

The info stored in a tiny *L* can be unraveled to L_{eff} , but info is conserved!

Quark/Gluon Latent S

Let's look at the latent space embeddin

Latent Spaces

EFN (*k* = 1) *L* = 128

Quark/Gluon Latent S

Let's look at the latent space embeddin

0.26

0.24

0.22

0.20 40 - 0.18

0.16

0.14

0.12

100

Yo

p giv

This wa

19

Latent Spaces

k = 2

L = 1

The Moment(s) of Truth

Just a single (radially symmetric!) function $\phi \sim f(r) \sim log(r)$

Simply compute the average values of ϕ^1 , ϕ^2 , ϕ^3 , ϕ^4 on each event (akin to angularities), and feed these 4 numbers^{**} through a simple neural net *F*.

This alone is enough to get an IRC-safe quark-gluon classifier with an AUC ~ 0.83!

^{*}I apologize if I have repeated this same joke in other contexts during this talk.

It would have been an even better joke if I had used top samples here.

gi

This

20

Therestingly, an EFN with L=4 has roughly the same performance, suggesting it learns something equivalent to this one function

Email me questions at rikab@mit.edu!

0.25 0.00

for complex ones

Radial

Profile 0.1

Conclusion

Hope: The "Moment-EFN" gives more efficient representations! 1.00 0.75 bu 0.50 $\mathcal{O}_k(\mathcal{P}) = F_k\left(\langle \phi^a \rangle_{\mathcal{P}}, \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}, ..., \langle \phi^{a_1} ... \phi^{a_k} \rangle_{\mathcal{P}}\right)$ -0.25 "More efficient representation" means ϕ , F could be... -0.50

- **1.** Simpler elementary functions?
- More simply parameterized? X No, independent of k 2.
- Easier to embed? ✓ Yes! Much smaller L's for larger k 3.

MPA Latent Space: k = 4, l = 1

Latent Space

~log(*r*)

0.2 Rapidity y

Fit: $c_1 + c_2 \log(c_3 + y)$

0.3

Appendices

22

Aside, if we have time: Attention is all you need

23

Can view moment pooling as a multi-headed self-attention-like mechanism Each latent variable weights each other latent variable

Analytic Observables

Define $\phi(r) = 1 + 0.5 \log(r + 0.01)$

Feed the first 4 moments to a simple DNN – AUC of ~0.82! Angularities AUC ~0.75.

Rikab Gambhir – BOOST – 02 August 2023

24

gi

Angularities Study (Details)

Dataset:

- 14 TeV Z+jet[g, uds] events generated in Pythia 8.226
- Jets clustered using AK4 (Fastjet 3.3.0)
- Keep p_T between 500 GeV and 550 GeV, |y| < 1.7
- 100k Train, 2.5k Val, 2.5k Test
- Angularities normalized to unit mean and standard deviation
- Particle p_{T} normalized to one.

Training:

- Batch Size: 512
- Epochs: 100
- Optimizer: Adam with learning rate 0.001

Q/G Study (Details)

Same dataset as angularity study, but with 500k training samples

For each of k = 1 ... 4:

- 1. Choose random integers F_{size} and ϕ_{size} from 1 ... 128, and *L* from 1 ... L_{max} , where L_{max} = 128 for k = 1, 64 for k = 2, 32 for k = 3, and 16 for k = 4.
 - a. Choose such that the number of network parameters is uniform in log scale.
 - b. For the linear *F* study, set F_{size} =1.
- 2. Initialize N = 3 Moment-EFNs (with different seeds), where the F and φ networks have three layers of the above size and latent dimension L.
 a. For the linear F study, instead choose the F network to be a single linear layer.
- 3. Train all *N* Moment-EFNs, using BCE loss, with the same hyperparameters are the angularities study. Record their AUCs.
- 4. Record the mean and standard deviation of the *N* AUCs and plot a single point. Repeat for 25 total points.

